SUSTAINABILITY THROUGHOUT THE GAS VALUE CHAIN

Claudia Beumer Sales Manager Processing Solutions

Japan Technical Seminar, Nov 2018

Agenda

- Gas Value Strategy
- Market update
 - Regulations and Market Developments
 - Decarbonization
- Emission reduction strategy
 - Engine performance
 - The Use of Green fuels
- A sustainable future
 - Ship to Shore
 - Making Green Propulsion a Reality (cooperation WinGD/GTT/Wartsila)

n plant

Sustainable societies

Ôh

'At Wärtsilä our purpose is to enable sustainable societies through smart technology' The opportunities presented by smart technology will foster a new era of collaboration and knowledge-sharing with suppliers, partners and customers.

New products, services and solutions

Efficiency

Value creation

Growth

Wärtsilä Gas Solutions (WGS)

- Innovative solutions for handling and processing of gaseous and cryogenic cargo
- Ship to shore facilities, small and mid scale terminals
- (Bio)gas upgrading and liquefaction onshore and in marine
- The complexity and the need for utmost reliability of these solutions make WGS a preferred supplier for ship owners, terminal operators and EPC companies.
- With WGS you have the experienced partner throughout the complete Gas Value Chain
- Integrated solutions for the shipbuilding industry, owners and operators

WGS Product Offering

Fuel Gas Supply

LNG Liquefaction

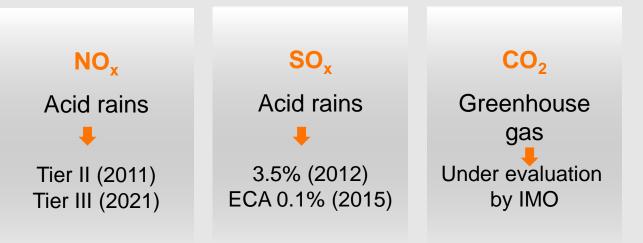
Flare Gas Ignition

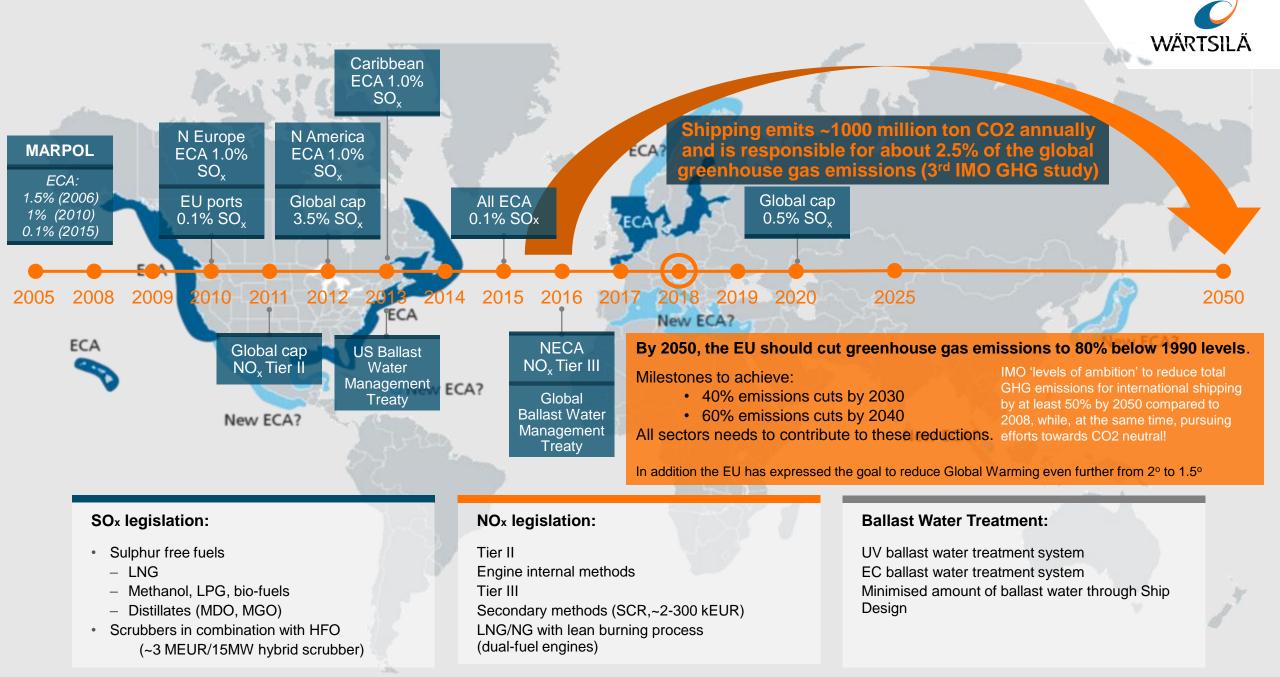
Biogas Upgrading

Biogas Liquefaction

VOC/ VER Recovery

MARKET UPDATE


More stringent regulations force the Industry to reduce emissions



Source: UN.org

Europe leads the global clean energy transition: Commission welcomes ambitious agreement on further renewable energy development in the EU Strasbourg, 14 June 2018

Source: press release EC 14-06-18

9 © Wärtsilä

Emission reduction; which strategy to follow

Engine efficiency improvements,

- 1. Lower engine CO₂ emissions
- 2. Voyage planning

Carbon Credits

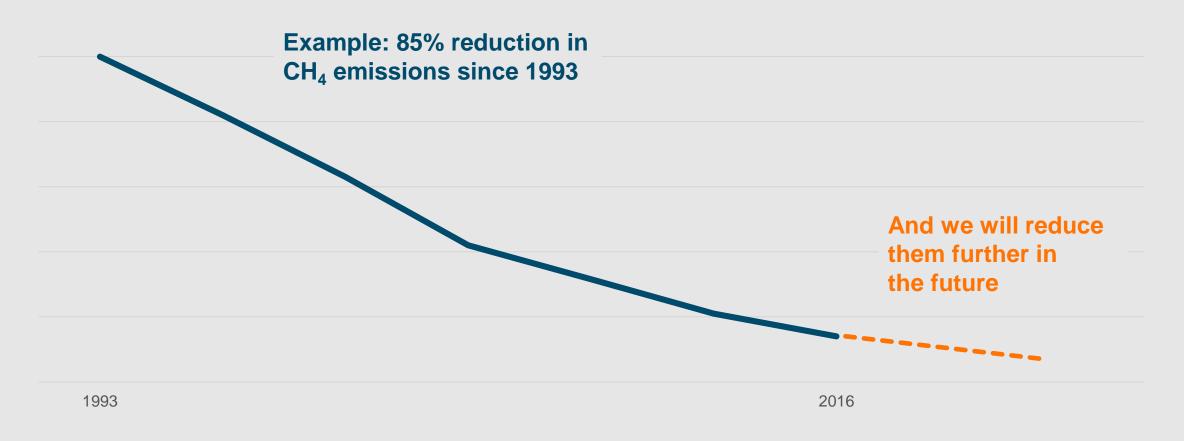
Fuel de-carbonization, utilizing alternative fuels

- LNG vs. diesel. Per unit of energy, LNG causes ~20% less CO₂ emission
- Biofuels that have a negative CO₂ emission during their production;
- 3. Biofuels created from biowaste

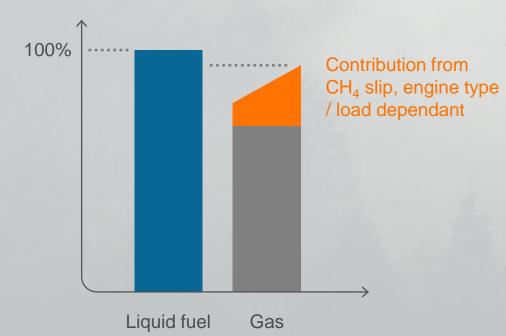
Lowering non- CO_2 emissions. Prime example is CH_4 emitted from gas engines.

- 1. Scrubbers
- 2. SCR

PROPULSION AND POWER



GHG emissions from Wärtsilä engines have been decreasing for decades


Wärtsillä gas engines now outperform Wärtsilä diesel engines by 12-30%

Diesel and gas engines produce greenhouse gases...

Indexed GHG emissions as CO₂ equivalents

...but gas engines compare favorably to diesel engines!

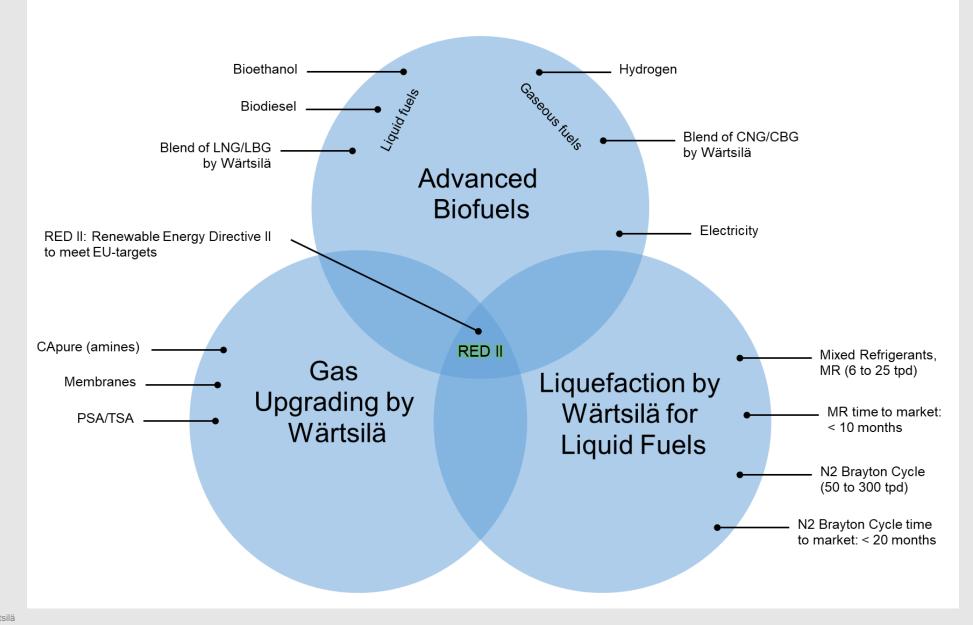
ALTERNATIVE FUELS

Gas as fuel

- LPG/LEG has a high energy density and burns clean, making it a desirable alternative fuel for the future
- LPG/LEG is non-toxic. In case of spills, it will not be as harmful to the environment as oil based fuels.
- The burning of LPG/LEG results in lower emissions compared to oil-based fuels
 - CO₂ : 20%
 - NO_X: 10–20%
- Virtually no particles in the exhaust gas

Biofuels

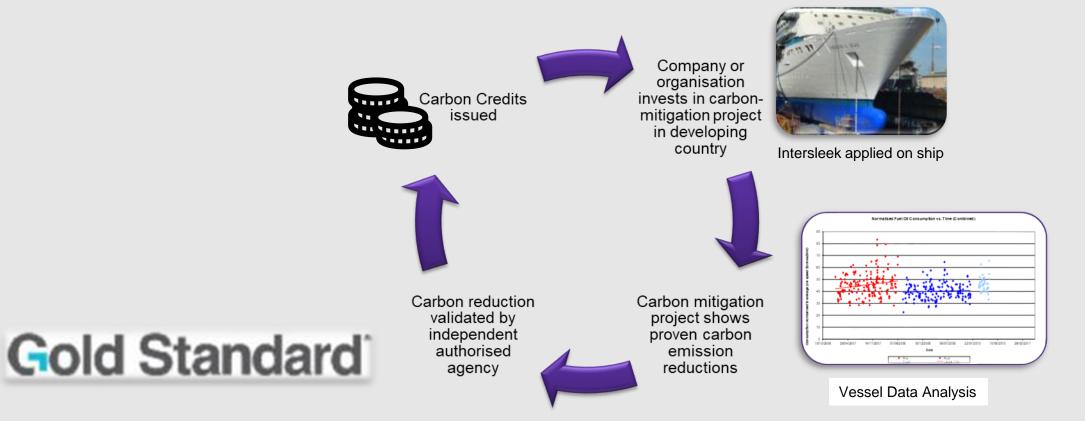
The stone age did not end because we were running out of stones. The oil age will not end because we are running out of oil ...


- 1 ton biowaste \rightarrow 130 liter LBG or 65 kg LBG
- Biowaste of a midsize town like Oslo (60,000 tons biowaste per year):
 - 7.8 million liter LBG, or approx. 4,000 tons LBG per year
 - Fuel supply to approx. 135 busses in public transportation
 - More than 50% emission cuts in changing from diesel to LBG

Global low-carbon economy roadmap by 2050

- By 2050, the EU should cut greenhouse gas emissions to 80% below 1990 levels
- Milestones are 40% emissions cuts by 2030 and 60% by 2040
- All sectors from power to transport need to contribute
- The low-carbon transition is feasible & affordable \rightarrow fuel blends
- Source: https://ec.europa.eu/clima/policies/strategies/2050_en

Advanced Biofuel Provision and Wärtsilä Technology to meet RED II Requirements by 2021 to 2030


Biowaste to fuel; Upgrade and Liquefaction

- With CAPure and biogas liquefaction, Wartsila is able to provide a complete turnkey solution
- Biomethane has a high caloric value
- Minimal CH4 slip
- Helps achieve sustainability criteria
- Recovered CO2 can be sold as side product
- No need for additional exhaust treatment

CARBON CREDITS ARE A MEANS TO SUPPORT THE ENERGY TRANSITION IN SHIPPING

1 Carbon Credit = **1** Tonne CO₂ Saved

Once generated, Carbon Credits can be

- Sold to generate revenue
- Retired to offset emissions elsewhere
- Gifted to other parties

Enable a smart marine eco system, "co-financed" by Carbon Credits (CC)

1 carbon credit	= 1/3 ton HFO saved
1/3 ton HFO saved	= apr. 100\$
1 carbon credit	= apr. 6-7 \$ (current carbon credit pricing), annual issuance
carbon credits	= 10 to 28 years potential income over additional CC Program

• Fuel reduction remains the dominant business case driver.

• Carbon/ Fuel reduction gives a high credibility, being independently verified.

A SUSTAINABLE FUTURE

capacity

Big data analytics

Smart vessels

Automated ports

Maritime Analytics

INSIGHT DATA **ACTIONS** > > Data is continuously Data is automatically analyzed Insight is transformed collected from vessels and and enriched to actions by easy-to-use external data sources user interfaces 0010101010101010100101 3CM BY T P RPM E 1010010101010 RANKED

Onboard:

- Existing systems
- Eniram sensors

Onshore:

- Forecasts
- Knowledge bases

- Statistical modelling
- Machine learning
- Simulation
- Prediction
- Optimization
- Data enrichment

- Efficient crew operations
- Optimized asset lifecycle
- Minimized fuel use
- Reduced emissions
- Best commercial efficiency
- Proactively ensured safety

OPERIM[®]

Enabling Smart Operations

Creating the Infrastructure; 3k LNG Bunkering Barge for European Inland Water Ways

Owner	LNG Shipping (Victrol and CFT)
Туре	LNG Bungering Barge
Cargo	LNG
Financier	Shell
Ship Size	3 000 CBM
Shipyard	
Scope of supply	Cargo Handling SystemCargo TanksLNG Metering system
Ship design	INEC

ΒV

2018

Ship dimensions 110 x 15 x 11 m

Class

(LxBxD)

Delivery

Creating the Infrastructure; 4k LNG ATB Barge – Bunkering of cruise vessels

Q-LNG **Owner** Туре 4k LNG ATB Barge w. cylindrical type C tanks LNG Cargo **Ship Size** 4 000 cmb Shipyard VT Halter Scope Complete Wärtsilä integrated solution of supply Cargo tanks, cargo handling system, pumps, STS, SSL, control system, thrusters, E&A, Communications, DP **Barge design** VT Halter Class ABS/USCG

WARTSILA-WINGD-GTT

Norway - All rights reserved

A

100

Smart Solutions driving "LNG as Fuel"

A new platform for future shipping by collaboration of three technology providers

Barcelona, Gastech – September 2018

31 © Wärtsilä

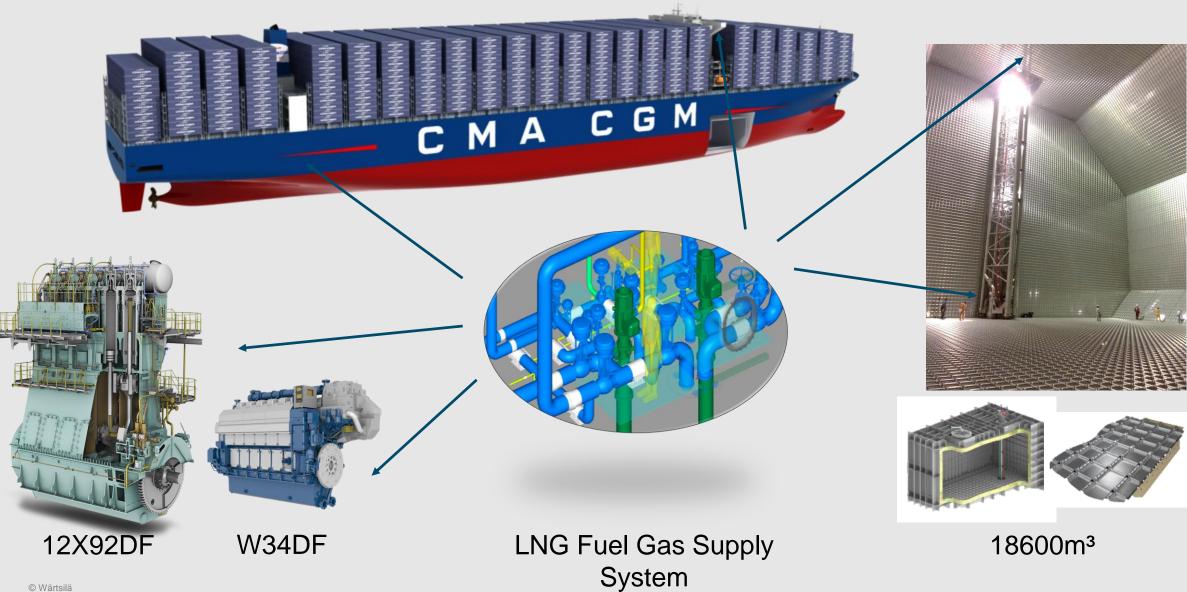
Quotes of the partners:

WinGD, Rolf Stiefel: "The simplicity of our 2-stroke dual fuel engine design is the key to success and the base for a smart and fuel efficient solution".

GTT, Julien Bec: "It's time to accelerate LNG innovations by merging high-end technologies in order to meet the environmental targets".

Wärtsilä, Frank Harteveld: "The next leap on our roadmap to a cleaner horizon can only be realized by extensive collaboration".

External influences driving "LNG as Fuel"



Driving LNG by the industry, there is need for:

- Close collaboration by technology providers;
- Legislation needs to be in place;
- Make sure that LNG is available at all strategic locations and port hubs;
- Understanding Total Cost of Ownership.

Wärtsilä LNGPac[™]

